Implantable Systems and Microparticle Depots

Meeting the Formulation and Manufacturing Challenges of Long-Acting Drug Delivery

Introduction

- What are implants and depots?
- Why implants and depots?
 - Improved patient compliance & improved efficacy = Improved outcomes
 - Reduced administration frequency
 - Bypasses gastric and hepatic first pass degradation of API
 - Controlled drug delivery level
 - Long-lasting drug delivery
 - Local or systemic drug delivery
 - Revenue potential of novel dosage form
 - Drug lifecycle management
 - IP

Examples Of Implants

Biodurable Intravaginal Intraocular Sub-cutaneous Nuvaring Implanon (Nexplanon) Iluvien Estring Occusert Norplant (Jadelle) Contraception **Uveitis** Contraception HRT Diabetic Macular Diabetes Cancer Edema Opioid Moisturizing Addiction ~ weeks 1 year (2020) ~ years ~ years

Bioresorbable

Intrathecal Intraocular

Recurrent Glioma

Glaucoma AMD

Ozurdex

~ weeks

~ months

Examples Of Depots

Vivitro1° (naltrexone for extended-release injectable suspension)	 Vivitrol® by Alkermes Active Ingredient: Naltrexone Route of Administration: Intramuscular Approval Date: 1984 Indicated for the treatment of alcohol/opioid dependence 	Dosing Frequency Every 4 weeks
Sandostatin LAR Depot. (octrebible acetale for injectable suspension) 10mg ° 20mg ° 30mg	 Sandostatin® LAR Depot by Novartis Active Ingredient: Octreotide Route of Administration: Subcutaneous Approval Date: 1998 Indicated for treatment of acromegaly, severe diarrhea/flushing episode associated with metastatic carcinoid tumors and VIP-secreting tumors 	Every 4 weeks
Arestin winocycline HCI 1mg	 Arestin® by OraPharma Active Ingredient: Minocycline HCI Route of Administration: Periodontal Approval Date: 2001 Indicated as an adjunct to scaling and root planning (SRP) procedures for reduction of pocket depth in patients with adult periodontitis 	Variable
Risperdal CONSTA ilsperidone Long-Acting Injection 12.5mg, 25mg, 37.5mg, 50mg	 Risperdal Consta® by Janssen Active Ingredient: Risperidone Route of Administration: Intramuscular Approval Date: 2003 Indicated for the treatment of schizophrenia and bipolar I disorder 	Every 2 weeks
Lupron Depot* (leuprolide acetate for depot suspension)	 Lupron Depot® by AbbVie Active Ingredient: Leuprolide acetate Route of Administration: Intramuscular Approval Date: 1989 Multiple indications including prostate cancer, central precocious puberty, fibroids and endometriosis 	Every 1, 3 or 6 months

Part 1

Biodurable and Bioresorbable Implants

(S | HEALTH

Short to long term drug delivery explantation straightforward

Short to medium term drug delivery explantation undesired or impossible)

BIODURABLE IMPLANTS BIO-RESORBABLE IMPLANTS

The Key Challenges

The Key Challenges

Matrix or Reservoir?

Core-sheath Reservoir Implant

Matrix Implant

RELEASE RATE

TIME

What Dimensions?
Rod Diameter Affects Drug Release Rate

What Dimensions?
Sheath Thickness Affects Drug Release Rate

Which Drug Loading? Drug Loading Affects Release Rate

Loading / Solubility

Which Polymer?

Polymers must be

- Made under cGMP
- Biocompatible
 - ISO10993
 - USP< 1031>
 - USP class VI (prolonged mucosal contact)
- Supported by a manufacturer DMF

	DEVICE CA	TEGORY			BI	OLO	GIO	CAL E	FFE	CTS			
Device Type	Body Contact	Contact Duration Limited Less than 24 hours Prolonged 24 hours to 30 days Permanent Over 30 days	Cytotoxicity	Sensitization	Irritation or Intracutaneous Reactivity	Systemic Toxicity (acute)	Pyrogenicity	Sub-acute and Sub-chronic Toxicity	Genotoxicity	Implantation	Hemocompatibility	Chronic Toxicity	Carcinogenicity
		Limited	•		•								
	Skin	Prolonged	•	•	•								
		Permanent	•	٠						_			
ace	Mucosal Membrane	Limited Prolonged	•		•								
Surface		Permanent		ė									
	Breached or	Limited											
	compromised surfaces	5.00	•	•	•								
		Permanent	*	•					•:				
20	Blood Path, Indirect	Limited	٠	•	٠		•				•		
External Communicating		Prolonged Permanent	•			·		54				10	
1	Tissue/Bone/ Dentin	Limited											
E		Prolonged	•	•	•		•	•	•	٠			
8	Dentin	Permanent	٠	٠	•	•			•	٠		•	
гпа	Circulating	Limited	•			•							
xte	Blood	Prolonged	•	•	•	•	•	•		•			
ш	PRINTER.	Permanent	•	•		•	•			•		•	
	T	Limited	•	•	•								L
Ħ	Tissue/Bone		•	•	•	•	•	•	•	•			-
Implant		Permanent Limited		•		•			•			*	
E	Blood	Prolonged							180		:		
	Dioou	Permanent	100	933		100			100	100	100	-	12

Which Polymer?

ORESORBABI PGA **PCL** m Polyanhydrides

Which Polymer? Polymer choice affects drug release rate

Which Polymers?

Drug Solubility in Core and Sheath Polymers Controls Drug Release Rate

 $(sheath\ thickness = 50\ um)$

Which Polymer?

Polymer Chemistry Affects Degradation Rate (Drug Release Rate)

Relative degradation rates: PGA < PLA << PLGA

Which Polymer?

Polymer Composition Affects Degradation Rate (Drug Release Rate)

The Key Challenges

How To Mix API in Polymer?

Twin Screw Hot Melt Extrusion

Feeder(s)

Barrel containing screws

How To Make Matrix Implants?

	EXTRUSION	INJECTION MOLDING
Process	Continuous	Batchwise
Output	Rods or tubes (catheters)	"Any" form factor
Throughput	Limited by barrel dimensions and flow rates	Limited by mold cavity number and cycle time
	Relatively Inexpensive	Relatively inexpensive
Cost	Custom dies	Potentially expensive molds
	Requires cutting machine	
Other		Sprue residues?

How To Make Reservoir Implants? 1. Core Sheath

Sheath formulation

Continuous process
Requires two single screw extruders

How To Make Reservoir Implants? 2. Core Sheath-sheath

Sheath 1 formulation Sheath 2 formulation

Continuous process Requires two single screw extruders

How To Make Silicone Implants?

- API in one or both liquid prepolymers (A & B)
- Chemically cure in mold cavities (heat)
 - API stability?
- Requires Sn or Pt catalyst
 - API compatibility?
- Slow batch process (cure takes time)
- Potential for ethanol evolution

□ HERLTH How to Manufacture With Limited Materials?

Options:

- Solution casting
- Powder mixing and small scale thermal forming

Turbula mixer (API + polymer)

Mini twin screw extruder (10 mm screw, 10g batch)

Vacuum clamping valve

Vacuum clamping valve

Water cooling

Mini injection molder

The Key Challenges

in vitro Drug Release Testing (IVRT)

- Measure of drug release in a controlled laboratory environment
- Test must be representative, sensitive, and reproducible
 - Medium that reflects in vivo conditions
 - Selection of appropriate stirring/soaking procedure
 - Importance of identifying and maintaining sink conditions
 - Proper sampling frequency
 - Proper test duration

in vitro Drug Release Testing (IVRT)

IVRT is Good for:

- ✓ Assessing effects of materials and design choices
- ✓ Estimating timeframe of drug release
- ✓ Predicting long term release from "short" term data
- ✓ Developing / refining / validating implant models

✓ Batch release testing

in vitro Drug Release Testing (IVRT)

IVRT is **NOT** good for predicting in vivo performance

- Use IVRT wisely
- Go in vivo ASAP!

Implant Challenges Summary

Successful implant development depends on properly addressing the challenges of:

Part 2

Bioresorbable (Microparticle) Depots

US | HEALTH

What Size are Microparticle Depots?

Depot Features

Solid microspheres

Dry powders (reconstitution)

Sterile

Degrade completely (~ months)

Why Microparticle Depots?

Reduced dose frequency prolonged delivery (patient compliance)

Accurate delivery of small quantities of potent drugs

Protection of labile APIs

Avoids first-pass degradation

Sustained and Controlled delivery of an API over long periods of time

Key Challenges

- Some challenges same as with resorbable implants
 - Which polymer?
 - Ensuring API stability with polymer degradants
 - Which sterilization process?
- And some new ones...
 - What particle size (distribution)?
 - What manufacturing process?
 - How to preventing agglomeration?
 - During production
 - During lyophilization
 - How to handle residual solvents
 - How to conduct IVRT with microparticles

What Particle Size & Distribution?

What Manufacturing Process?

Emulsification / **Evaporation**

Membrane Emulsification

How To Prevent Particle Agglomeration?

During Production

- Correct choice of emulsifier (polymers)
- Correct choice of solvent
- Optimum mixing time
- Optimum solvent removal protocol

During Lyophilization

- Correct Choice of Iyoprotectant (sugars)
- Proper lyophilization cycle development

How to Handle Residual Solvents?

- ICH guideline Q3C (R7) on impurities: guideline for residual solvents
- Places residual solvents in three classes:
 - Class 1 solvents: Solvents to be avoided
 - Known human carcinogens, strongly suspected human carcinogens, and environmental hazards.
 - Class 2 solvents: Solvents to be limited
 - Non-genotoxic animal carcinogens or possible causative agents of other irreversible toxicity such as neurotoxicity or teratogenicity.
 - Solvents suspected of other significant but reversible toxicities.
 - Class 3 solvents: Solvents with low toxic potential
 - Solvents with low toxic potential to man; no health-based exposure limit is needed.
 - Class 3 Solvents have PDEs of 50 mg or more per day.

ICH Guidelines explicitly state which solvents fall into each category

How to Handle Microparticles In IVRT?

Apparatus 4 (USP< 711>) Filter chamber Sieve 40 mesh d = 0.2 w = 0.45 Glass beads Carefully introduced depot sample Glass beads Glass beads Glass beads

- Standardized compendial apparatus
- Flexible configuration
 - open loop mode (eluent to waste) for poorly soluble drugs
 - closed loop (eluent recycled through cell) for better sensitivity
- Auto-sampling and in-line detection possible

- Inexpensive
- Potentially higher throughput

Case Study: Microparticle Formulation and Characterization

- Goal: Preparation and characterization of API loaded microparticle depot formulations
- Study Design:
 - **Polymers**: Different grades of PLGA (lactide:glycolide ratio and MW)
 - API: Dexamethasone (widely used corticosteroid with anti-inflammatory and immunosuppressant properties)
 - Particle properties: Measure particle size distribution and in vitro release

DEXYCU® Depot (Dexamethasone intraocular suspension)

Case Study: Materials and Methods

Polymers

- PLGA 50:50 (Lactide: Glycolide); Inherent viscosity 0.2 dL/g
- PLGA 75:25 (Lactide: Glycolide); Inherent viscosity 0.2 dL/g

API

- Dexamethasone; target loading ~ 20% w/w particle
- Manufacturing Methods
 - Emulsion/solvent evaporation approach using:
 - Dip-style (batch) homogenizer
 - In-line (continuous process) homogenizer
 - Micropore/microfluidic process

Case Study: Characterization

Property	Test Method
Appearance	Optical Microscopy
Particle Size Distribution	Laser Diffraction
Assay	HPLC
In Vitro Release Testing – accelerated	USP Apparatus IV

Optical microscopy of PLGA microparticles

Case Study: Particle Properties

	BATCH 1	BATCH 2	BATCH 3
Polymer	75:25 PLGA	50:50 PLGA	50:50 PLGA
Polymer IV	0.2 dL/g	0.2 dL/g	0.2 dL/g
Process	Batch homogenization	Batch homogenization	Micropore
Mean Particle Size	20.3 μm	43.4 μm	22.9 μm
Drug Loading	22.5% w/w	21.5%	17.3%

Case Study: In Vitro Release Testing

The greatest difference in mean particle size led to the greatest difference in release profiles.

Case Study: In Vitro Release Testing

Different manufacturing methods led to similar mean particle sizes and release profiles.

Microparticle Depot Summary

Desired dosing features:
 Sustained and controlled delivery of APIs

Challenges:

Particle size, materials selection, residual solvents, release rate, agglomeration

Success achieved by:

Formulation design, manufacturing execution and analytical expertise

Overall Summary: Implants and Depots

- Many advantages and new product opportunities
- Complex development, requiring:
 - Specialized equipment
 - Materials and design choices
 - Careful use of IVRT
 - Experienced, expert team

The Health business of Lubrizol Life Science is your partner for implant and depot development/manufacturing.

Questions?

Visit us at www.Lubrizol.com/Health to learn more!

